Name	
------	--

Fossil Notes

Directions: Read pages 110-120 in *Earth's Changing Surface*. Fill in the notes as you read.

WHAT ARE FOSSILS?

Fossils are the _____ remains or _____ of living things.

HOW ARE FOSSILS FORMED?

Most fossils form when ______ die and are buried by sediments. The sediments slowly ______ into rock and preserve the ______ of the organisms.

Fossils are usually found in ______ rock, which is made of rock ______ or remains of

TYPES OF FOSSILS

1. ______ fossil – a ______ area in sediment in the shape of an organism. It forms when

the hard part of the organism (like a shell) is ______.

2. _____ fossil – a solid copy of the shape of an organism. It is the _____ of a mold and

is formed when water deposits ______ and _____ in the empty space of a mold.

3. ______ fossil – when ______ replace all or part of an organism. The minerals

harden and preserve the organism over time.

4. ______ fossil – an extremely thin coating of ______ on rock. When sediment buries an organism, some the organism evaporates and leaves behind carbon.

5. ______ fossil - gives evidence of the ______ of ancient organisms. The sediment

preserves the ______ of an organism and slowly hardens into rock (like a footprint).

6. ______ Remains – some organisms are preserved with little or no change. For example, tar

and ______ (the sap from evergreen trees) can cover and seal an organism completely. Others have been ______, which can even preserve hair and skin.

Cast fossil

Carbon fossil

Preserved in amber

Mold fossil

WHAT CAN FOSSILS TELL US?

- Information about history of life and how organisms ______ over time
- Information about the changing environments on Earth, including ______
- Changing ______types

LAYERS OF ROCKS

If you are a geologist who finds a fossil, you will want to know how old it is. The rock you find it in can be your clue!

The ______ of rocks tell how old a fossil is. The older rock layers are at the ______ and the younger layer is at the ______. Each higher layer closer to the surface) is younger than the layers *helow* it

layers *below* it.

Another clue to the age of rocks comes from studying ______ and _____. Extrusions

come from lava that flow onto the Earth's _____ and hardens. An extrusion is always

_____ than the rocks below it. An intrusion happens when magma pushes ______ bodies

of rock and hardens. An intrusion is always _______ than the rock layers around and beneath

- 1. Is the layer labeled with a V showing an extrusion or intrusion? ______
- 2. Which is older, V or Y? How do you know? _____
- 3. Which layer in Site 1 might have formed at the same time as layer W in site 2?

Scientists can use fossils to match up rock layers at locations that may be far apart.